
The crossover region of polymer excluded 
volume in the Gaussian approximation 

Fabio Ganazzo l i  and G i u s e p p e  A l l e g r a  
Dipartimento di Chimica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 1-20133 
Milano, Italy 
(Received 14 September 1987; accepted 12 October 1987) 

The excluded-volume expansion of open-chain and cyclic polymers has been investigated in the crossover, or 
intermediate, region where deviations from the Gaussian approximation may be considered as minor. Based 
on an extension of the Fourier configurational approach already proposed by the authors, the chain free 
energy is minimized over all the degrees of freedom of the chain by numerical methods in a self-consistent 
way. To test the approximation, a comparison is made with the predictions of other theories and with 
extensive Monte Carlo simulations. It is found that, though not completely satisfactory for the hydrodynamic 
radius, the above approximation is good enough to give results quantitatively adequate for most practical 
purposes. 

Ogeywords: excluded volume; Gaussian approximation; Fourier eonfigurational appmaeh; self-consistent free-energy 
minimization) 

INTRODUCTION 

When an open or cyclic polymer chain is in the fully 
excluded-volume regime, the distribution function of the 
interatomic distances deviates substantially from the 
Gaussian distribution valid in the unperturbed state or in 
its vicinity j. A single, universal parameter z representing 
the strength of the repulsive interaction is usually 
employed to describe these regimes. In the regime of 
fully excluded volume, we have z >> 1 and the following 
asymptotic expressions apply: 

R 2 ~ S 2 ~ N  2v (1) 

where N is the number of chain bonds and R 2 and S 2 are 
the mean-square end-to-end distance and radius of 
gyration, respectively (R 2 is a meaningless quantity for a 
cyclic chain). The critical exponent v has the value ] in 
mean-field affme theories I or in non-affine theories using 
the Gaussian distribution 2, while recent field-theoretical 
arguments 3 give the exact value 0.588.. .  On the other 
hand, in the vicinity of the unperturbed state we have z--.0 
and perturbation theory gives the exact expressions4: 

~ = 1 +a3z- ( ~ -  2~7~)z 2 + . . .  

= 1 + 1.3333z-2.0754z2 + . . .  

~s2__l 134 z 536 12_4_2 2 +105 --(lOS--1296n) z "~-''" 

= 1 + 1.2762z - 2.0819z 2 + . . .  

1 

(2a) 

(open chain) (2b) 

= 1 + 1.5708z- . . .  (cyclic chain) (2c) 

where z 2 2 atR=R /Ro and ~t2s=S2/S2o, the zero subscript 
standing for the unperturbed state. These equations may 
be applied at most for z-0.15; higher-order terms in (2a) 
have recently been calculated up to the sixth one 5, but the 
resulting sum does not have a larger domain of validity. 

The purpose of the present paper is to investigate for 
open and cyclic polymer chains the so-called crossover 
region 6 with intermediate z in the universal, but not 
asymptotic, regime where deviations from the Gaussian 
distribution are expected to be minor, and to compare the 
results with other theories based on renormalization- 
group approaches or with Monte Carlo results on various 
lattices. As already done by us, we will use the Fourier 
configurational approach 7, but we will drop here the 
periodicity constraint previously employed for open 
chains. In other words, we will no longer consider the 
open chain as a configurationally repeating portion 
within an infinite chain. Accordingly, the mean-square 
distance between any two chain atoms will now depend 
not only on their topological separation but on their 
position with respect to the chain ends, unlike the 
unperturbed state in which the chain is perfectly uniform. 
We intuitively expect that the expansion of a given 
internal portion is larger the larger the whole chain, as 
already found for periodic chainsS; we also expect that in 
an open chain such expansion depends on the location of 
the portion within the chain, being largest in the middle 
because of the repulsive interactions of the outer 
segments. 

The repulsive potential between atoms at a distance r 
will be written simply as -fir(r), fl being the binary 
cluster integral. This form of the potential is an 
oversimplification 9, but its exact form is irrelevant in the 
universal regime. Also, we will neglect all conformational 
details such as fixed bond angles and preferred rotational 
states which, in this context, simply determine the mean- 
square length 12 of the segment (or spring) between 
successive units (or beads). In practice, this means that 
universal behaviour may only be attained by very long 
chains, because only in this case are the long-range 
excluded-volume interactions not affected by the 
local stereochemical features. 

For numerical reasons, our results will be obtained in 
the range z~<2, wherein both ~t 2 and =s 2 are roughly 
between 1.0 and 2.5. In addition to spanning the 
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crossover region mentioned before, this range is of resulting equation is: 
significant practical interest. 

THE SELF-CONSISTENT EQUATIONS AND THE 
NUMERICAL PROCEDURE 

The configurational free energy of a perturbed open or 
cyclic chain of N segments in a good solvent is given by 
the sum of an elastic term having an entropic origin and 
an interbead repulsive term 10, which in the present case is 
simply given by the two-body interactions. The former 
term may be written as a sum over the separate 
configurational modes7'1° and the latter as a sum over all 
the bead pairs. The free-energy excess over the 
unperturbed, reference state, indicated with a zero 
subscript, is therefore, in kBT units: 

A - A  o =3  ~ [82(q)_ 1 - In  ~2(q)] + fl Z Z  pjk (3) 
~ ¢ =  k s T  2{q} y<k 

where q is the normal-mode coordinate, ~2(q) is the 
expansion ratio of the q-mode mean-square amplitude 
and Pjk is the probability density of contact between beads 
j and k. Within the Gaussian approximation, we have: 

Pjk = ) (4) 

where (r2k) is the mean-square distance between the two 
beads. The orthogonal Fourier modes l(q) of an 
unperturbed chain are 11: 

N 

l(q) = ~, i(])Q(j,q) (5) 
j = l  

where l(j) is thejth 'bond' vector, and for the open chain: 

Q(j, q) = (x/2)sin[q(j- 1)] 
(6a) 

q = (n/N)n~, nq = 1, 2 . . . .  , N - 1 

while for the cyclic chain: 

Q( J, q)= e ~ 
(6b) 

q = (2n/N)nq,  nq = 1, 2 , . . . ,  N -  1 

Here and in the following it is understood that when 
dealing with the open or the cyclic chain we employ the 
appropriate {q} set given above. These modes are 
configurationally orthogonal even in non-ideal 
conditions for a cyclic chain owing to its cyclic symmetry, 
but only approximately so for the open chain. However, 
in the latter case we will always use the transform (6a), 
neglecting non-orthogonality effects for simplicity. 

From these definitions, ~2(q) is given by: 

~2(q) = <17(q)12>/<lT(q)12>o = <lir(q)lZ>/Nl2 (7) 

and the mean-square distances are: 

(r  2 , 12 ~ 8 2 ( q ) s i n 2 [ q ( k - j ) / 2 ] l Q [ ( k + j +  1)/2,q]l 2 
jk) = ~ 2., sin2(q/2) (8) {q} 

The tx2(q) are now determined by minimization of the 
excess free energy ~¢ (equations (3), (4) and (8)). The 

1 3f l  15 
- - = 1  
82(q) 4N sin2(q/2) 

x ~ sin2[q(k - J ) / 2 ] lQ [k  + j  + 1)/2, q]12 
/ i . 2  N5/2 
\ '  j k /  j<k 

(9) 

where the non-dimensional excluded-volume parameter 
flis: 

- 4 /  3 ~3/2^ 

The two coupled sets of equations (8) and (9) must be 
satisfied in a self-consistent way and therefore we looked 
for a numerical solution through an iterative procedure 
both for the cyclic and for the open chain, as done 
previously 7-1°. For given values of N and /~, starting 
from the unperturbed chain values of (r~k) (from 
equation (8) with 82(q) = 1) we obtained through equation 
(9) an improved set {~2(q)} which was recycled in the right- 
hand side of (8) and so on until self-consistency was 
reached. All the quadratic averages of interest may then 
be obtained from the final values of 82(q) and (r~k). The 
mean-square end-to-end distance R 2 of the open chain is 
simply (r2m+l), while for both the open and the cyclic 
chains S 2 is given by: 

2 1 2 12 ~' 82(q) 
= = (11) 

and the hydrodynamic radius Ru by: 

2 (r  1 R,71= EE )z ) (12) 
"" j<k  

with 

( r ~ l ) = ( 6 / n ) ' / 2 ( r ] k )  -1/2 (13) 

according to the Gaussian approximation. In the 
unperturbed state, that is, with a2(q) = 1, we recover some 
well known results. Among them, from equation (8): 

<r~>o=121k-jl 

< 4 > 0  = t21 k -Jl( 1 - I  k -ill N) 

(open chain) (14a) 

(cyclic chain) (14b) 

and in particular, for the open chain: 

2 - -  2 Ro = (rl ,N + 1)o  = Nl2 (15) 

From equations (11) and (12) we get, for large N: 

S 2 = Nl2/6  (open chain) (16a) 

S 2 = N12/12 (cyclic chain) (16b) 

Rffo 1=~(6/~)1/2(N12) -1/2 (open chain) (17a) 

Rffo I = (61t)a/2(N12)- 1/2 (cyclic chain) (17b) 

The numerical procedure outlined above to solve the 
coupled equations (8) and (9) is very time-consuming: the 
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computing time for each cycle of the iterative procedure 
increases as N 3 for the open chain and as N 2 for the 
cyclic chain. Apart from fully exploiting the symmetry 
between j ,  k and N - k ,  N - j  in the open chain and that 
between [ / -k  I and N - ~ - k [  in the cyclic chain, for a 
given N we also took care to increase/~ stepwise starting 
from 0 (the unperturbed state), using each time the results 
obtained with a lower/~ to make convergence quicker. 
For  the same reason, the set {a2(q)} of the current cycle at 
a given/~was averaged with that of the previous one using 
a suitable weight so as to damp the oscillatory 
convergence. In general, seven to nine cycles were 
required to reach stability within five digits in the values 
of both .d  and the a2(q). In the case of the open chain, the 
values of N ranged from 40 to 300, computer time 
limitations preventing us from including larger values: a 
CPU time of about 50 min on an IBM 4381 was in fact 
required for each cycle in the case of the largest N. For the 
cyclic chain, N was between 500 and 1800, the CPU time 
being about 5 min per cycle at the largest N. 

25 l 
Per ~.., 

Op /J 

2 . 0  ! ,," 
D F 

- / ~'/" z" 
/."i.."" 

1.5 ~f"F~ 
"j'/.' • 

:S ~ . ~ - ~  Per 

J .  0 , ~ ~  c'H t t 
0.01 0.02 0.05 0.1 0 .2  0 . 5  I 2 

z 

Figure 2 The expansion ratios ~ and ~H as a function of z for an open 
chain. The labels are the same as in Fioure  1 

RESULTS AND DISCUSSION 

The results are shown in Figures I, 2 and 3 in terms of the 
expansion ratios =~, as 2 and all, where an = R,/R,o,  as a 
function of the universal variable z = ¼/~N1/2. Only for the 
shortest open chains were some slight deviations from 
universal behaviour found to be still present at large z. As 
anticipated, the range taken into consideration is z ~<2, 
where a~, as2<2.5. For  the sake of comparison, we also 
report in Figures 1 and 2 the analogous results obtained 
for periodic chains 7,s (i.e. open chains with periodic 
boundary conditions): the open chain model (i.e. non- 
periodic) gives in general lower expansion factors for both 
R 2 and S 2, The open chain results are more reliable, as 
they were obtained by minimization of the free energy 
with respect to N - I  independent degrees of freedom, 
while in the periodic chain model only half of them are 
independent. Furthermore, the open chain model allows 
us to distinguish between terminal and central portions, 
unlike the periodic chain 8. As expected, we find that the 
same chain portion is less swollen if located near the ends 
than around the centre, but is still more swollen than a 

/ °TX t 
2 . 0  / 

I 

0.01 0.02 0.05 O. I O. 2 0.5 I 2 

Z 
Figure l The expansion ratio ct~ as a function of z for a non-periodic 
open chain (Op). The corresponding plot in the periodic chain 
approximation is also shown (Per). Other  theoretical results are 
reported as curves F m  ~3, D P ,  M N  TM and DB is  (equations (18)-(21) 
respectively) 

i I 

2 .0  - / 

I . 5 ." ., 

O.OI 0.02 0.05 0.1 0 .2  0 .5  I 

Z 

Figure 3 The expansion ratios ~ and ~H as a function o fz  for a cyclic 
chain. The D F  curve 6 (equation (19)) is also reported 

free chain of the same length, owing to the repulsive 
interactions of the outer segments, in agreement with 
recent experimental findings 12. 

In keeping with what was obtained by perturbative 
methods 4, we also predict a larger expansion of the cyclic 
than of the open chain, for a given z, owing to the 
greater density of segments dictated by the chain closure 
requirement, the ratio between the corresponding values 
of as 2 tending to a constant value with increasing z. On the 
other hand, for chain sequences such that N>>lj-kl>_. 1, 
we find the same degree of expansion for (rjk),.2 
independent of N, provided in the open chain we 
consider a sequence far removed from the ends. 

The curves obtained from various approaches are also 
reported in Figures 1-3 for comparison. The equations 
proposed in these theories are such as to reproduce at 
least the first-order perturbative results; unless otherwise 
stated, they refer to the open chain. 

(i) Modified Flory equation (Fm)la: 

a 5 - a 3 = Cz (18) 

where C =  4 if ~ = a  R and c ' - ~  if a=as ;  v=0.6. - -  105 
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(ii) Douglas and Freed equations (DF)6: 

aP=(l+2Z3z)P/S[l+-~'3az/(l+~z)] z~<0.15 (19a) 

= (6.44 lz) °a 836P(1 +a)  z~>0.75 (19b) 

where p=2 ,  a = - 0 . 1 2 5  if a-=as; p=2 ,  a = - 0 . 1 3 0  
(open chain) or a = - 0 . 1 0 3  (cyclic chain) if a=as ;  
p = l ,  a = - 0 . 0 6 8  (open chain) or a = - 0 . 0 6 6  (cyclic 
chain) if a-=an; v=0.5918. 

(iii) Muthukumar and Nickel equation (MN)~4: 

a~ = [1 + 7.524z + 11.06z2] °'1772 (20) 

which gives v=0.5886. 

(iv) Domb and Barrett equations (DB)15: 

a~=[l+ lOz"['(9"~'~'~3 )Z2"[-87t3/2Z3] 2/15 (21a) 

as2=a~e(z) (21b) 

O(z) = 0.933 + 0.067 exp( - 0.85z - 1.39z 2) (2 lc) 

an = (1 + 6.09z + 3.59z2) 1/1° (21d) 

which gives v=0.6. 
The popular Flory equation was obtained assuming a 

mean-field affine expansion, the DF equations were 
proposed from renormalization-group arguments, while 
Muthukumar and Nickel performed a series analysis of 
their previous sixth-order perturbation expansion s using 
Borel summation techniques (des Cloizeaux et al. ~6 
obtained an identical result after a direct renormalization 
analysis of the same perturbative series). Finally, the DB 
equations are a semiempirical fit of Monte Carlo 
simulations and exact enumerations on various lattices 
coupled with perturbation theory results. 

Numerical solution of our system of equations (8) and 
(9) yields the correct asymptotic behaviour at low z, as 
seen in Figures 1-3 for a~ and as 2, with no need of any ad 
hoc adjustment of coefficients. The agreement with other, 
more sophisticated, methods is satisfactory: in particular, 
up to z - 1  our results for a~ are essentially coincident 
with those of the DB equation and close to the DF and 
MN equations, while increasing differences are present at 
larger z. All curves will eventually reach the asymptotic 
slope ~/= 2(2v - 1) in the double-logarithmic plot. The DF 
curve already reaches this slope for z---1 (t/=0.3672), 
whereas it is attained only for z >> 1 in the other cases: the 
slope is r/=0.4 for our curve and for the DB and Fm 
curves, whereas it is ~/=0.3544 for the MN curve. 

The same good agreement with other theories is found 
for the as2curve shown in Figure 2 for the open chain. This 
implies that all (r~k) distances are properly described, not 
merely R 2. As an example, we have checked that at low z 
the internal distances have the correct expansion ratios as 
obtained from first-order perturbation theory 4 for any 
value 1 <~j,k <~ N. Concerning the asymptotic slopes of the 
curves in the double-logarithmic plot, what was said 
above for a~ applies also here. 

Going now to the ring, we compare our results with the 
only theory presently available to our knowledge, i.e. that 
of Douglas and Freed 6 (Figure 3). In this case, the 
discrepancy from their curve, though still small, is larger 
than for the open chain. 

Concerning an, the agreement with other theories is 
again quite satisfactory. We note however that our results 
do not reproduce the correct coefficient in the first-order 
perturbation expansion: 

aH= 1 + C.z (22) 

which was fitted through an adjustable parameter in the 
DF and DB theories. According to Stockmayer and 
Albrecht 17, the coefficient Cn for the open chain is 0.609, 
quite different from the value 0.416 obtained z8 using the 
Gaussian approximation for (r~ 1) as done by us (see 
equation (13)). The source of the discrepancy should be 
traced back to the use of this equation, in which the value 
of the numerical coefficient is expected to decrease 
somewhat under coil expansion. 

We would like to summarize our results with the 
following equations, which tit almost exactly the 
numerical results discussed before up to z = 1 and within a 
few per cent up to z = 2: 

a~ = (1 + 10z + 25z 2 + 72z3) 2/15 (23) 

as 2 = (1 + ~ z +  18z 2 + 5523) 2/15 

(open chain) (24a) 

a2 = (1 + 4-t~z + 45z 2 -k 75Z3) 2/15 

(cyclic chain) (24b) 

an = (1 + 4.16z + 3.2z2) 1/1 o 

(open chain) (25a) 

an = (1 + 7.1z + 4.4z2) u1° 

(cyclic chain) (25b) 

As a final point, we report in Figure 4 the plot of a2(q) 
vs. ~=~(2n/q) u2 for open and cyclic chains. The full 
curve shows the universal behaviour of internal modes 
common to both cases provided the Fourier coordinate 
q ,~ 1. The first few modes follow a different pattern and 
therefore are plotted separately. For  the cyclic chain, the 
first and second modes are shown, higher modes quickly 
merging from above into the universal curve. The same 

/ 
/ ; 

2 . 5  .," / / 

'2 
:' t :" ! 

/ J " / / - ~ / 
/ / - 

, i ,, i 
2.( - / / i 

l , / 
~ ,. , 

v ,, ~ •  / 

~o Cycl ic ,." ,,, ~ "  
/ / / 

1 . 0  I 
0.01 0.02 0 .05  0.1 0 . 2  0 , 5  I 2 

Fipre 4 The expansion ratio ~2(q) of the mean-square normal- 
mode amplitudes as a function of ~' (see text). The full curve is the 
universal curve for internal modes for both the open and cyclic chains. 
The figure also shows the curves of the first mode for an open chain 
(lower dotted curve) and a cyclic chain (upper dotted curve), and that of  
the second mode (broken curve) for a cyclic chain. The curves of higher 
modes merge very quickly into the universal curve and are not shown for 
clarity 
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trend is followed by the open chain, al though from below 
(in Figure 4 only the first mode is shown for clarity). 

C O N C L U D I N G  RE MAR KS  

only as a tool to obtain S 2 and R 2, but also because they 
are needed explicitly in dynamic studies to obtain the 
elastic potential and the hydrodynamic interaction 
strength, which in turn produce the spectrum of 
relaxation times 19. 

The excluded-volume expansion of a polymer chain has 
been studied within the Gaussian approximation for both  
the open and the cyclic chain. Minimization of the free 
energy with respect to all the degrees of freedom led us to 
two sets of coupled equations expressing the mean-square 
distances between any two beads and the expansion ratios 
of the normal-mode amplitudes. These equations were 
solved numerically by an iterative procedure in a self- 
consistent way. 

The expansion factors ct 2 and ~ts 2, referring to the mean- 
square end-to-end distance and radius of gyration, 
respectively, coincide with the results of perturbation 
theory at small z, whereas in the crossover region they are 
in good agreement with other equations based on 
computer  simulations and on previous theoretical results. 
This supports the intuitive idea that in this region the 
assumption of a Gaussian distribution for the interatomic 
distances does not introduce serious errors when 
compared to more sophisticated approaches. On the 
other hand, the results for ~t M appear  to be less accurate, 
probably due to the inadequacy of evaluating the 
average reciprocal distances ( r  -1 ) in the Gaussian 
approximation within the good-solvent regime. 

As a final remark,  we point out that the expansion 
ratios of the normal-mode amplitudes are of interest not 
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